为什么排列~组合~概率~的数学题这么难类~~给点技巧~~重重有赏~!

为什么排列~组合~概率~的数学题这么难类~~给点技巧~~重重有赏~!

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。
一、合理分类与准确分步法
解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )
A.120种 B.96种 C.78种 D.72种
分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有 种排法;2)若甲在第二,三,四位上,则有 种排法,由分类计数原理,排法共有 种,选C。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。
例 2、 4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?
分析: 因恰有一空盒,故必有一盒子放两球。1)选:从四个球中选2个有 种,从4个盒中选3个盒有 种;2)排:把选出的2个球看作一个元素与其余2球共3个元素,对选出的3盒作全排列有 种,故所求放法有 种。
二、元素分析与位置分析法
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例3、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
A. 24个 B。30个 C。40个 D。60个
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有 个,2)0不排在末尾时,则有 个,由分数计数原理,共有偶数 =30个,选B。
例4、 马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?
分析:表面上看关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的4个空中插入3只暗灯”的问题。故关灯方法种数为 。
三、插空法、捆绑法
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例5、7人站成一排照相, 若要求甲、乙、丙不相邻,则有多少种不同的排法?
分析: 先将其余四人排好有 种排法,再在这人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有 种方法,这样共有 种不同排法。
对于区域性“小整体”的排列问题,可先将区域性元素捆绑在一起看作一个元,与其余元素一同排列,然后在进行区域性排列。
例6、 7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?
分析: 把甲、乙、丙三人看作一个“元”,与其余4人共5个元作全排列,有 种排法,而甲乙、丙、之间又有 种排法,故共有 种排法。
四、总体淘汰法
对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。
例如在例3中,也可用此法解答:五个数字组成三位数的全排列有 个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要除去,故有 个偶数。
五、顺序固定问题用“除法”
对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同排列,然后用总排列数除以这几个元素的全排列数。
例7、 6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?
分析: 不考虑附加条件,排队方法有 种,而其中甲、乙、丙的 种排法中只有一种符合条件。故符合条件的排法有 种。
六、构造模型 “隔板法”
对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。
例8、 方程a+b+c+d=12有多少组正整数解?
分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有 。
又如方程a+b+c+d=12非负整数解的个数;三项式 ,四项式 等展开式的项数,经过转化后都可用此法解。
七、分排问题“直排法”
把几个元素排成前后若干排的排列问题,若没有其它的特殊要求,可采取统一排成一排的方法来处理。
例9、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有 种。
八、表格法
有些较复杂的问题可以通过列图表使其直观化。
例10、9 人组成篮球队,其中7人善打前锋,3人善打后卫,现从中选5人(两卫三锋,且锋分左、中、右,卫分左右)组队出场,有多少种不同的组队方法?
分析:由题设知,其中有1 人既可打锋,又可打卫,则只会锋的有6人,只会卫的有2 人。列表如下:
人数
6人只会锋
2人只会卫
1人即锋又卫
结果
不同
选法
3
2
3
1
1(卫)
2
2
1(锋)
由表知,共有 种方法。
除了上述方法外,有时还可以通过设未知数,借助方程来解答,简单一些的问题可采用列举法等。解此类问题常用的数学思想是:分类讨论的思想,转化思想和对称思想等三种。排列组合是高中数学的重点和难点之一,也是进一步学习概率的基础。事实上,许多概率问题也可归结为排列组合问题。这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复”和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧,最终达到能够灵活运用

为什么排列、组合、概率的数学题这么难?

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。

一、合理分类与准确分步法

解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。

例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )

A.120种 B.96种 C.78种 D.72种

分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有 种排法;2)若甲在第二,三,四位上,则有 种排法,由分类计数原理,排法共有 种,选C。

解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。

例 2、 4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?

分析: 因恰有一空盒,故必有一盒子放两球。1)选:从四个球中选2个有 种,从4个盒中选3个盒有 种;2)排:把选出的2个球看作一个元素与其余2球共3个元素,对选出的3盒作全排列有 种,故所求放法有 种。

一道关于排列组合概率的数学题

回答:
共108张牌,每人27张。一个人抓到4个王的概率是
C(4, 4)C(104, 23)/C(108, 27)
≈0.0033
= 0.33%。
可见,这个概率很小。

学习数学的数列和概率排列组合,不懂

把复杂的问题简单化,不要碰到问题就害怕。你如果上大学就会发现高中学的排列组合和概率简直小儿科,大学的复杂的要死了。你学不懂的话,可以把书上的题目联络到生活中,把抽象的题目实际化,具体化,慢慢理解。另外,研究下例题,掌握解题思路和规律。

求解一道和“组合与排列”有关的概率数学题

没近视的概率是C二十五2/C五十2 = 12/49
那么有近视的概率就是1-12/49 = 37/49

高中概率,排列组合的题解题方法技巧。

排列组合问题的解题策略
关键词: 排列组合,解题策略
一、相临问题——捆绑法
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?
解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。
评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。
二、不相临问题——选空插入法
例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?
解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为: 种 .
评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。
三、复杂问题——总体排除法
在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.
解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 -3=32个.
四、特殊元素——优先考虑法
对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种.
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有 种,而其余学生的排法有 种,所以共有 =72种不同的排法.
例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种.
解:由于第一、三、五位置特殊,只能安排主力队员,有 种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有 =252种.
五、多元问题——分类讨论法
对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )
A.42 B.30 C.20 D.12
解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。
例7.(2003年全国高考试题)如图, 一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)
解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色. 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从而共有24+48=72种方法,应填72.
六、混合问题——先选后排法
对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.
例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )
A. 种 B. 种
C. 种 D. 种
解:本试题属于均分组问题。 则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。
例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )
A.24种 B.18种 C.12种 D.6种
解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31·A22,故不同的种植方法共有A31·C32·A22=12,故应选C.
七.相同元素分配——档板分隔法
例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?
本题考查组合问题。
解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。
总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。
具体说,解排列组合的应用题,通常有以下途径:
(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。
(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。
(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。
排列组合问题的解题方略
湖北省安陆市第二高阶中学 张征洪
排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。
首先,谈谈排列组合综合问题的一般解题规律:
1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别在于是否与顺序有关。
3)复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。
4)按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。
5)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
6)在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。
总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。
其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。
一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
例1、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
A. 24个 B.30个 C.40个 D.60个
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B。
二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53--3A42+ C21A31=30个偶数。
三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四.相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.
例2、有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种.(结果用数值表示)
解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A33种排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22=1440(种).
注:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.
五.不相邻问题用“插空法”:不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.
例3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个.(用数字作答)
解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有A33种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42=288(种).
注:运用“插空法”解决不相邻问题时,要注意欲插入的位置是否包含两端位置.
六.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
例4、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?
分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 ÷A33 =120种。(或A63种)
例5、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 ÷A33种)
七.分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。
例6、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种。
八.逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例7.将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )
A.6 B.9 C.11 D.23
解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B
九、构造模型 “隔板法”
对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。
例8、方程a+b+c+d=12有多少组正整数解?
分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .
又如方程a+b+c+d=12非负整数解的个数,可用此法解。
十.正难则反——排除法
对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.
例9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种.
A.140种 B.80种 C.70种 D.35种
解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70(种),故选C.
注:这种方法适用于反面的情况明确且易于计算的习题.
十一.逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律
例10、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。
解:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种
十二.一一对应法:
例11.在100名选手之间进行单回圈淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?
解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。
应该指出的是,以上介绍的各种方法是解决一般排列组合问题常用方法,并非绝对的。数学是一门非常灵活的课程,同一问题有时会有多种解法,这时,要认真思考和分析,灵活选择最佳方法.还有像多元问题“分类法”、环排问题“线排法”、“等概率法”等在此不赘述了。

高中数学排列组合概率题~

解:A,B,C 的人数组合仅能为 (2,1,1) (1)3 部分全排列 3x2x1 = 6 (2)其中的 2 人组合部分作为一个整体有 [ (4x3) / (2x1) = 6 ],除去甲-乙组合 6-1 = 5 (3)共 6x5 = 30 甲、乙两位大学生被分到不同景点的情况有30种。

数学排列组合的答题技巧是啥

你这问题问的十分空泛啊。
对于排列组合,你只需要抓住 一个:有序,还是无序,(也就是改变顺序是否结果不同。从而分辨应该是排列,还是组合)
然后每个问题,相应的可以使用分步法进行(先抽,再排。)
列举法(最笨的。。适用小数量)
转换思考(比如1 2 3 4 4这5张牌进行排序,有多少种不同的排法,可以转化思维变成 讲 1 2 3 分别插入 4 4形成的间隔之中。进行思考~。
也可以假设为 1 2 3 4 5 那么有多少种。其中又有多少种重复。)
总的来说。见多而视广。这里说再多也是夸夸其谈,多多练习,看到的题型多了你就会做了。。

排列,组合,概率例题和具体解析,解题技巧?

高2数学书上全是,很清楚,自己看

为什么数学题这么难

数学题强记公式,多做题。错误的题就检讨哪方面的知识点不足,再多看就好了



~

#15939201925# 高中排列组合概率独立事件问题 有红色横线那里 不明白 为什么算甲队的要用C32 而乙队的直接用 - ******
#池萱# 算乙队时用了三种情况相加,算甲队时也用三种情况相加,但这三个概率乘积相同,可以写成三倍.经济数学团队帮你解答,请及时评价.谢谢!

#15939201925# 数学计数原理:排列组合问题、概率问题1.从5双不同颜色的鞋中取出? ******
#池萱# 1、C(5.1)*[C(8.2)-C(4.1)]=2082、B3、前四次为3次一正,第5次为次.3次一正的概率:4/9*3/8*2/7*5/6*C(4.1)=10/61第5次为次的概率:1/5经过五次测试恰好将四个次品全部找出的概率:10/61*1/5=2/61

#15939201925# 数学中的排列组合是怎么样的?怎么用来解决概率问题? - ******
#池萱# 由于那些排列组合符号很难打,请见谅.排列是将一组数按位置进行排列,其定义是从一组元素中抽取m个元素放到n个不同位置,问这总共有多少种方法.而组合是从一组元素中抽取m个不同元素,问有多少中抽法.

#15939201925# 排列组合概率问题 - ******
#池萱# 其实在高中刚学的时候确实有点难,毕竟是新接触的内容,又不好理解.但是其实排列组合概率问题就是古典概型问题,不过你需要把样本空间和某事件所包含的基本事件数利用排列组合的知识求解出来.因此还是排列组合问题的理解和掌握.关于排列组合问题,我建议你不要漫无目的地死做题,而要善于按题目类型来做,并要学会总结、归纳,要经常和同学老师交流,因为有些题目自己认为做得非常对,但实际上自己是错误的,却又找不出错误之处在哪,所以善于与他人交流(尤其是老师)是很重要的.排列组合并不是非常难,只要你努力些、耐心些就可以了.

#15939201925# 为什么我不会做排列组合和概率? - ******
#池萱# 建议从最简单的计数原理开始自我复习,然后逐步弄清两个基本模型--排列与组合,最后将几种常见的题型解答规律弄懂(比如元素分析法\位置分析法,特殊位置特殊元素优先考虑,etc).这是个循序渐进、由浅入深的过程,不能掉一环啊!其实掌握两个计数原理几乎可以解决任何高考题.

#15939201925# 一个数学组合排列概率的题目? ******
#池萱# 楼主你好 1、现在四个人中选两个人去三个国家中的一个 C(4中选2)*C(3中选1)接下来在对两个人进行全排列 A(2.2)=2 原因两个人去两个国家有两种方法 6*3*2=362.是有拿回的所以每次拿到次品的概率1/25 只有一件次品 这件次品可能是1or2or3or4 次取的 所以概率 = 4*(1/25)*(24/25)^3

#15939201925# 一道排列组合中的概率题 - ******
#池萱# 因为答案的算法,是把你想的这种情况,当成一种来算的,不管是分子还是分母.环形的环境,这种本来就只是一种情况,是没有顺序说法的.答案的分子,是出现5对夫妇都一起相邻而坐,共有多少种情况,分母是10个人随便坐,共有多少种情况,注意,这里,你提出的这10种情况,都是被看成一种来算的,所以10!必须除以10;而分子,是把一对夫妇看成一个整体来算,所以必须除以5,这里你明白吧. 当然,如果你要把它顺序化也可以,只是分子,5对夫妇恰好都被安排在一起相邻而坐的情况,也要顺序化,算出来的答案是一样的.

#15939201925# 排列与组合的区别,有些求概率的题时,有时用组合有时用排列,我都搞混了,分不清! - ******
#池萱# 1、2、3、4、5、6、7、8、9 选三个数组成三位数,可以组成A[9,3]=9*8*7=504﹙个三位数﹚,用的是排列.即9个元素中取3个元素的排列数.3个元素的次序重要﹙123≠231﹚,此时用排列. 选三个数组成“三数集合”,可以组成C[9,3]=9*8*7/3!=84﹙个“三数集合”﹚,用的是组合.即9个元素中取3个元素的组合数.3个元素的次序不重要﹙﹛1,2,3﹜=﹛2,3,1﹜﹚,此时用组合.

#15939201925# 一道数学题目 说明理由 谢谢 ******
#池萱# 由于4个数中不存在0,所以不用考虑特殊情况. 由一次函数的性质可知,k代表斜率,b代表函数在y轴上的截距,要使图像不经过第四象限,则b大于0,且k大于0,于是b、k只能是1、2了. 不知道楼主学过排列组合没有,如果学过的话,概率用排列组合很容易求出,为P22 / P24 = 1/6 如果没学过排列组合只能这样思考了,从4个数中任取2个 不同数的可能性一共有6种,而现在要满足题目的要求b、k只能在1、2中取,即只有1种取两个不同数的方法,于是概率为1/6

#15939201925# 数学概率题(跟排列组合有关的) - ******
#池萱# 甲必须安排到岗位A,现在只要考虑BCDE四个岗位和乙丙丁戊四个学生 乙不能安排到B,可供选择的还有CDE,有3种排法 剩下的丙丁戊三个学生,和三个岗位,有A(3)(3)=6种排法 所以共有3*6=18种排法 而如果不考虑以上所有条件,五个学生五个岗位,有A(5)(5)=120种排法 所以概率=18/120=3/20

  • 为什么排列~组合~概率~的数学题这么难类~~给点技巧~~重重有赏~!
  • 答:[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有 个,2)0不排在末尾时,则有 个,由分数计数原理,共有偶数 =30个,选B。例4、 马路上有8只路灯,为节约用电又不影响正...

  • 请问下概率问题为什么很多要用组合来解~不能用排列吗~请详细一点...
  • 答:概率问题中的古典概型,其中一部分可以使用排列组合来简化解题过程 但用排列还是组合要视情况而定。例如:有6件产品,其中有2件次品,4件正品 现在一个一个不放回抽取,则第恰好取第4次将次品全部取出的概率是?方法一:排列方法,前四次共有A(6,4)=360中取法,其中满足条件的取法为3*A(2,2...

  • 自考《概率论》后的一道习题,不明白为什么用排列,而不是用组合?
  • 答:(1)概率计算=可能发生的个数 / 总个数。(2)10本书是不同的,任意放,则总个数是10本书的全排列,即总个数为A10 10;(3)其中指定的3本书要放一起,将这3本书捆绑成一本书,和其余的7本书一起放书架上,相当于8本书的全排列,这样的个数为A8 8;被放在一起的3本书,内部顺序可...

  • 如何理解排列、组合与概率论的关系?
  • 答:排列组合的计算公式是A(n,m)=n×(n-1).(n-m+1)=n/(n-m)。排列组合是组合学最基本的概念,所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序,组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的发展 排列组合的中心问题是研究给定要求的排列和...

  • 问道高中数学题(排列组合与概率问题)
  • 答:第一题,三个人先坐在那里,有3! = 6种坐法,在人的左右两边和中间都放入座位,用来保证每人左右都有空座位,用黑色块表示座位,如下 ■人■人■人■ 剩下的一个座位和这4个座位任意一个放到一起就可以了(换句话说,这4个位置挑一个位置放两个座位)最后总的方法就是6*4 = 24 第二题,设...

  • 高中数学概率与排列组合问题
  • 答:最后一个2表示甲可以在头或尾)所以一共有排列种数:6x(72-24)=288种。说点题外话,其实要学好排列与组合不是两三句话的事,要多做不同类型的题,然后善于总结,最重要的一点是思路要清晰,不要漏也不能重,祝你高考顺利。有问题咱们可以再交流。

  • 数学概率怎样区分排列组合 就是什么情况用排列什么情况用组合
  • 答:其实排列就是在组合的基础上,把所取出来的东西,再拿来拍一下,就成了排列.这一点可以从公式上理 Am,n = Cm,n * An,n 表示从m个选出n个排列 先从m个选出n个组合 再把n个自行进行全排列 所以这很好理解只要记住排列是组合进一步就行了.

  • 概率论与数理统计排列和组合的关系。求高手指点迷津啊!
  • 答:这样就造成了重复,所以要除以2!。这样就可以理解第二部分了吧。例题:2n只鞋分成n堆的分法用第二部分的公式可以直接得,这是总情况数我们把它作分母,每堆自成一双鞋的情况只有一种,这很明显,因为每双鞋都是不一样的,所以把1作分子,就得到了概率p= 。望采纳 ...

  • 为什么在中学数学中,排列组合部分一直困扰着大家?
  • 答:分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市...

  • 高中数学,有关概率和排列组合
  • 答:2、这道题倒推较简单,即计算统一科目书相邻的概率。三种情况:(1)只有语文相邻,可视为一本书,数学只能插空,即2*2*3*2=24 式中第一个2为语文两本书的排列,第二个2为语文与物理的排列。(2)只有数学相邻,与(1)一样为24。(3)语文、数学都各自相邻,可视为一共只有三本书全排2...

    为传递更多家电数码信息,若有事情请联系
    数码大全网