聚苯胺的性质

聚苯胺(Polyaniline)一种重要的导电聚合物。
  聚苯胺的主链上含有交替的苯环和氮原子,是一种特殊的导电聚合物。可溶于N-甲基吡咯烷酮中。
  聚苯胺随氧化程度的不同呈现出不同的颜色。完全还原的聚苯胺(Leucoemeraldine碱)不导电,为白色,主链中个重复单元间不共轭;经氧化掺杂,得到Emeraldine碱,蓝色,不导电;再经酸掺杂,得到Emeraldine盐,绿色,导电;如果Emeraldine碱完全氧化,则得到Pernigraniline碱,不能导电。
  聚苯胺具有优良的环境稳定性。可用于制备传感器、电池、电容器等。
  聚苯胺由苯胺单体在酸性水溶液中中经化学氧化或电化学氧化得到,常用的氧化剂为过硫酸铵(APS)。中性条件下聚合的聚苯胺常常含有枝化结构。
聚苯胺是一种具有金属光泽的粉末,因分子内具有大的线型共轭 π电子体系,其自由电子可随意迁移和传递,而成为最具代表性的有机半导体材料。与其他导电聚合物相比,聚苯胺具有结构多样化、耐氧化和耐热性好等特点,同时还具有特殊的掺杂机制。聚苯胺及其衍生物不仅可通过质子酸的掺杂获得良好的导电性,而且可通过加入氧化剂或还原剂来使其骨架中的电子迁移发生改变,即“氧化还原掺杂”。掺杂后,聚苯胺及其衍生物的导电率可提高10个数量级以上,并可改善其在溶剂中的溶解性和加工性能。
自从科学家首次发现用AsF5或I2对聚乙炔进行P型掺杂可获得极高导电率的材料以来,导电高分子已在近年来逐渐发展成一门新型的多学科交叉的研究领域。而经过10多年的研究和试验,聚苯胺树脂的可溶性和加工性方面的研究也已取得了一定的突破。目前,解决导电聚苯胺树脂可溶性主要采取的方法有:功能质子酸掺杂、结构修饰、制备可溶性复合物、制备胶体颗料等。以上方法在不同程度上均可提高聚苯胺在有机溶剂中的溶解度,并进一步提高其成型加工能力。但是大多数有机溶剂都会造成不同程度的环境污染,如果能用水来代替,制成水溶性聚苯胺复合物,不仅有利于环保,也会带来更大的经济效益。因此,近年来水溶性导电聚苯胺已成为人们研究的热点。另外,制备聚苯胺复合物是改善聚苯胺加工性能的主要方法,目前主要采用电化学法和化学氧化法两种工艺。UNIAX公司通过溶液共混的方法制备了一种性能优异的透明导电涂层,透光率达80%,而表面电阻仅为 192Ω,可作为导电玻璃使用。聚苯胺还可以同PET、PVC、PS、PVA、 PA和PMMA等聚合物制成复合膜。如采用原位复合的方法可使PANI在很低的含量下就可具有较高的导电率,这是制备导电聚合物复合材料的一种很有发展前景的方法。

  电磁波屏蔽一般是指电磁波的能量被物体表面吸收或反射后而使其传导受阻,电磁波能量衰减程度越大,其屏蔽效果就越好。研究聚苯胺的电磁屏蔽及吸收性能,其导电与介电特性是两个必不可少的参数。随着聚苯胺加工问题的解决,近来以聚苯胺为基础的各种抗静电和电磁屏蔽材料相继问世。如美国UNIAX公司利用有机磺酸掺杂的聚苯胺和商用高聚物进行共混,可制备各种颜色的抗静电地板。另外,研究人员还制备了一种透明的聚苯胺基可热固化的涂料。该涂料与聚合物基体具有良好的粘接性能,它不但耐化学腐蚀,而且耐磨损。另外,科学家最近经反复试验制成了一种水溶性聚苯胺水乳液,它可用作防腐和防静电涂料。美国已将导电聚苯胺用于火箭发射平台的防腐蚀涂层,效果很好。日本还制造了一种透明的PANI防静电涂层,并用于 4MB的软盘上,效果非常好。目前美、日、德聚苯胺电磁屏蔽材料的研究均获得了突破性的进展。

  本征导电聚合物(ICPS)是一类新型的微波吸收材料,而高导电及高介电常数的聚苯胺在微波频段能有效地吸收电磁辐射。科学家们经反复试验后得出结论,当掺杂态的聚苯胺处于无定形态时,其吸收比率最大。利用聚苯胺吸收微波这一特性,目前国外已将它用作军事上的伪装隐身,法国正在研制一种隐形潜艇,美国则将其用作远距离加热材料,用于航天飞机中的塑料焊接技术。

  随着信息技术的蓬勃发展以及计算机、无线通讯技术的广泛使用,各种频率的电磁波对交通、航空航天、军事等领域的工作产生了不同程度的干扰。为此,一些发达国家和组织相继制定了排除电磁波干扰的国际标准和法规。以聚苯胺为首的包括聚吡咯、聚噻吩等本征导电聚合物在排除电磁波干扰中,发挥了巨大作用。与复合型导电聚合物不同,本征导电聚合物具有相对较高的电导率和介电系数,易于通过化学加工来控制或消除电磁波干扰。而与金属相比,这类材料质轻、有韧性、不易被腐蚀,从而越来越受到人们的青睐。

  另外,随着全球经济的迅速发展,环境问题特别是大气污染日益加剧,大气中的各种有害气体不断增多,各国科学工作者已开发出一些相应的气敏材料来检测这些有害气体。聚苯胺薄膜就是利用它能和某些气体发生氧化还原作用,引起掺杂度的改变,进而导致电导率发生明显的变化。利用这一特性,人们可以及时地检测空气中氮氧化物的含量。与NOx不同,H2S是具有还原性的气体。它能使聚苯胺化学传感器的电导率下降。  一般来自工厂的含有SO2的废气对生物和人类的生存环境均有极大的危害,所以如何及时地检测和控制SO2的排放量对控制环境污染至关重要。实验表明,采用旋转和蒸发法制备的聚苯胺薄膜与SO2作用以后,其电导率明显增加,而且完全可逆,其检测极限可达到2ppm。而新制备的聚苯胺蒸发膜灵敏度更高,它甚至可以检测到0.5ppm的SO2含量。另外,在常温下聚苯胺对NH3也有很高的灵敏度,所以也可以用它来检测空气中NH3的浓度含量。关于聚苯胺树脂用于生物传感器近年来中外也有不少研究。自从酶固定的第一篇报告问世以来,人们已经研究了各种固定酶的方法,但到目前为止,无论是酶固定的稳定性、重现性还是固定方法本身均存在一定的问题。鉴于 PANI导电高聚物具有的电化学活性,在氧化还原过程中,阴离子能掺杂进去,为酶的固定提供了新的途径。

  为了能制备一种更高电导率的聚苯胺高聚物,今后应加强分子设计和物理改性,研制出一种具有高电导率、介电常数和介电损耗的聚苯胺,以进一步提高聚苯胺树脂的屏蔽和吸收电磁波的性能;要通过各种仪器比和X射线衍射仪、红外光谱仪和扫描电镜等研究其结构与性能的关系。可以相信,通过科学工作者的不断努力和深入研究,今后一种性能更好的聚苯胺及其衍生物的导电聚合物将展现在世人面前,为清除空间电子雾,排除电磁波的干扰,为人类作出更大的贡献。

中文名称:聚苯胺
英文名称:Polyaniline
CAS:25233-30-1 聚苯胺

聚苯胺
MDL:MFCD00284320
分子式:C12H14N4

聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性。在电子工业、信息工程、国防工程等的开发和发展方面都具有多种用途。

性质特点
聚苯胺随氧化程度的不同呈现出不同的颜色。完全还原的聚苯胺(Leucoemeraldine碱)不导电,为白色,主链中各重复单元间不共轭;经氧化掺杂,得到Emeraldine碱,蓝色,不导电;再经酸掺杂,得到Emeraldine盐,绿色,导电;如果Emeraldine碱完全氧化,则得到Pernigraniline碱,不能导电。

聚苯胺具有优良的环境稳定性。可用于制备传感器、电池、电容器等。

聚苯胺由苯胺单体在酸性水溶液中经化学氧化或电化学氧化得到,常用的氧化剂为过硫酸铵(APS)。中性条件下聚合的聚苯胺常含有枝化结构。

绿色聚苯胺由苯胺单体在酸性水溶液中经化学氧化或电化学氧化得到,具有良好的导电性能,具有优良的环境稳定性。可用于制备传感器、电池、电容器等。聚苯胺通过“氧化还原掺杂”处理,掺杂后的聚苯胺导电率提高10个数量级以上,并改善了其在溶剂中的溶解性和加工性能。另外,通过特殊方法处理得到的水溶性好的聚苯胺,可以在水性体系里面使用。聚苯胺可以作为电磁波屏蔽材料,耐腐蚀材料,同时可以吸收微波,还可以用来作为检测空气中氮氧化物的含量的材料以及H2S,SO2等有害气体的含量。

聚苯胺的应用及市场简介如下:聚苯胺是一种高分子合成材料,俗称导电塑料。它是一类特种功能材料,具有塑料的密度,又具有金属的导电性和塑料的可加工性,还具备金属和塑料所欠缺的化学和电化学性能,在国防工业上可用作隐身材料、防腐材料,民用上可用作金属防腐蚀材料、抗静电材料、电子化学品等。

性能特点
组成:聚苯胺及有机质子酸
用途:防腐蚀,防静电,用于船泊,电子,化工,纺织等领域。
外观颜色:深绿色或者浅绿色粉末。
导电率:10.6—100(s/cm)
粒径:小于20um
纯度:98.0wt%以上
掺杂率:大于30%(摩尔比)
分散性:在二甲苯,丁醇溶剂中可分散,浓度超过10 wt%,可加工温度:低于150℃,
气味:无味
分解温度:在空气中超过120度
吸水性:在空气中可吸3-5%的水份。

 聚苯胺的主链上含有交替的苯环和氮原子,是一种特殊的导电聚合物。可溶于N-甲基吡咯烷酮中。
  聚苯胺随氧化程度的不同呈现出不同的颜色。完全还原的聚苯胺(Leucoemeraldine碱)不导电,为白色,主链中个重复单元间不共轭;经氧化掺杂,得到Emeraldine碱,蓝色,不导电;再经酸掺杂,得到Emeraldine盐,绿色,导电;如果Emeraldine碱完全氧化,则得到Pernigraniline碱,不能导电。
  聚苯胺具有优良的环境稳定性。可用于制备传感器、电池、电容器等。
  聚苯胺由苯胺单体在酸性水溶液中中经化学氧化或电化学氧化得到,常用的氧化剂为过硫酸铵(APS)。中性条件下聚合的聚苯胺常常含有枝化结构。
苯胺的毒性较大,是致癌物质.
由于聚苯胺的性能不稳定,贮存中会发生变化,所以,一般是在酸洗现场现用现配。
这种缓蚀剂的主要优点是合成工艺简单,水溶性较好,缓蚀效果也好。缺点是所使用的原料(甲醛和苯胺)都具有一定的毒性,对人体有危害。

 聚苯胺的主链上含有交替的苯环和氮原子,是一种特殊的导电聚合物。可溶于N-甲基吡咯烷酮中。
  聚苯胺随氧化程度的不同呈现出不同的颜色。完全还原的聚苯胺(Leucoemeraldine碱)不导电,为白色,主链中个重复单元间不共轭;经氧化掺杂,得到Emeraldine碱,蓝色,不导电;再经酸掺杂,得到Emeraldine盐,绿色,导电;如果Emeraldine碱完全氧化,则得到Pernigraniline碱,不能导电。
  聚苯胺具有优良的环境稳定性。可用于制备传感器、电池、电容器等。
  聚苯胺由苯胺单体在酸性水溶液中中经化学氧化或电化学氧化得到,常用的氧化剂为过硫酸铵(APS)。中性条件下聚合的聚苯胺常常含有枝化结构。
苯胺的毒性较大,是致癌物质.
由于聚苯胺的性能不稳定,贮存中会发生变化,所以,一般是在酸洗现场现用现配。
这种缓蚀剂的主要优点是合成工艺简单,水溶性较好,缓蚀效果也好。缺点是所使用的原料(甲醛和苯胺)都具有一定的毒性,对人体有危害。

聚苯胺的应用及市场简介
聚苯胺是一种高分子合成材料,俗称导电塑料。它是一类特种功能材料,具有塑料的密度,又具有金属的导电性和塑料的可加工性,还具备金属和塑料所欠缺的化学和电化学性能,在国防工业上可用作隐身材料、防腐材料,民用上可用作金属防腐蚀材料、抗静电材料、电子化学品等。广阔的应用前景和市场前景使其成为目前世界各国争相研究、开发的热门材料。
2005年国际上导电高分子的相关产品产值已达10亿美元,这当中电子化学品、抗静电材料、聚苯胺金属防腐蚀材料、电磁屏蔽材料占80%以上。
在导电聚苯胺产品的开发中,目前最有成效的是德国的Ormecon公司,该公司主要生产导电聚苯胺防腐涂料和抗静电涂料,已经在美国、日本和韩国分别建立了Ormecon America,Ormecon Japan及 Ormecon Korea三家子公司,已经成为全球最有影响力的导电聚苯胺产品公司。
一、聚苯胺可用作防腐蚀涂料
德国科学家成功研制出一种基本上完全不怕生锈和腐蚀的塑胶涂料,这意味着日后要制造寿命过百年的汽车、游艇和大桥,将不再是天方夜谭。
研究人员发现,在金属表面涂上聚苯胺涂料之后,能够有效阻止空气、水和盐分发挥作用,遏止金属生锈和腐蚀。这种塑胶涂料成本低,用法简便,而且不会破坏环境。
简单而言,锈蚀是由金属原子与氧气结合而成,并会削弱金属的结构。为此人们一般会在金属表面涂上漆油或镀上锌层,以减慢金属氧化成锈的过程。不过,漆油和锌层的耐用程度却有限。
相对于漆油和锌,聚苯胺的功能大相径庭。它不是用作屏障,而是充当催化剂,以干扰金属氧化成锈这个化学反应。聚苯胺先从金属吸取电子,然后将之传到氧气中。这两个步骤会形成一层纯氧化物以阻止锈蚀。
在实验室的环境下,用聚苯胺制造出一种「永久耐用的有机金属」,其防锈能力较锌强一万倍。在实地测试方面,聚苯胺的防锈效能则下降至介乎锌的三至十倍,这已是很大的进步,并且还有更大的潜力提升性能。
纳米聚苯胺还可以制成聚苯胺/环氧共混体系、聚苯胺/聚氨酯共混体系、聚苯胺/聚酰亚胺共混体系、聚苯胺/苯乙烯丙烯酸共聚物(SAA)共混体系以及聚苯胺/聚丁基异丁酸酯共混体系等,这些共混物可用于各种场合的表面保护。
这种聚合物涂层优胜于锌之处,还在于其本身不属于重金属,因此对食物链和人体健康的影响较小,而且较锌便宜,更可用于几乎所有金属表面。目前,日本、韩国、意大利、德国和法国等欧亚国家,都已开始采用聚苯胺。
二、聚苯胺可用作抗静电和电磁屏蔽材料
由于它具有良好的导电性,且与其它高聚物的亲合性优于碳黑或金属粉,可以作为添加剂与塑料、橡胶、纤维结合,制备出抗静电材料及电磁屏蔽材料(如用于手机外壳以及微波炉外层防辐射涂料、和军用隐形材料等)。
三、聚苯胺可用作二次电池的电极材料
高纯度纳米聚苯胺具有良好的氧化还原可逆性,可以作为二次电池的电极材料。
四、聚苯胺可用作选择电极
纳米聚苯胺对于某些离子和气体具有选择性识别和透过率,因此可作为离子或气体选择电极。
五、聚苯胺可用作特殊分离膜
纳米聚苯胺因其具有良好的氧化还原可逆性也可制成特殊分离膜等。
六、聚苯胺可用作高温材料
导电聚苯胺纳米材料经测试其热失重温度大于200℃,远远大于其他塑料制品,所以还可以制备成高温材料。
七、聚苯胺可用作太阳能材料
纳米聚苯胺具有良好的导热性,其导热系数是其他材料的2——3倍,所以可作为现有太阳能材料的替代产品。
目前ORMECON的产品已经被多家公司采用在各种的产业中,其中有印刷电路制造;替代金和锡的涂装;造船公司用它来充当船舶抗腐蚀的漆料;而下一代面板显示器公司要用它开发出一种极便宜而且解析度极高的显示器。ORMECON的产品同时也用作防护电磁波的屏蔽材料。
通过以上资料的讲述,可知当前世界上对聚苯胺这种高分子材料的研究和开发正在从实验室走向工业化的初级阶段,聚苯胺的实际工业应用的开发更是处于初始时期。目前我们可知的用途仅仅是其广阔用途的很少一部分,说其是冰山一角也不为过。
目前,在我们国内对聚苯胺的研究和开发还刚刚开始,只有少数几家大学和科研单位在实验室里对聚苯胺的合成机理和导电特性进行原理性的研究。离大规模地进行工业应用还有一段不小距离。

聚苯胺的理化性质~

聚苯胺的实际合成与结构研究始于20世纪初,英国的Green和德国的Willstatter两个研究小组采用各种氧化剂和反应条件对苯胺进行氧化,得到一系列不同氧化程度的苯胺低聚物。Willstatter将苯胺的基本氧化产物和缩合产物通称为苯胺黑。而Green分别以H2O2,NaClO3为氧化剂合成了五种具有不同氧化程度的苯胺八隅体,并根据其氧化程度的不同分别命名为全还原式(leucoemeraldine)、单醌式(protoemeradine)、双醌式(emeraldine)、三醌式(nigraniline)、四醌式即全氧化式(pernigraniline)。这些结构形式及命名有的至今仍被采用。1968年,Honzl用缩聚方法合成了苯基封端的聚苯胺齐聚物,同年Surville合成了聚苯胺半导体并提出可能的结构形式,而聚苯胺的结构正式为人所认同是在1984年,MacDiarmid提出了聚苯胺可相互转化的4种形式,并认为无论用化学氧化法还是电化学方法合成的导电聚苯胺均对应于理想模型。中科院长春应化所的王佛松等人通过分析聚苯胺的IR和喇曼光谱,确认了醌环的存在并证明了苯、醌环的比例为3:1,MacDiarmid等人据此修正之前的模型,概括出了聚苯胺结构。 聚苯胺掺杂产物的结构,主要由极化子晶格模型和四环苯醌变体模型进行解释。聚苯胺的主要掺杂点是亚胺氮原子。质子携带的正电荷经分子链内部的电荷转移,沿分子链产生周期性的分布。且苯二胺和醌二亚胺必须同时存在才能保证有效的质子酸掺杂。质子掺杂是聚苯胺由绝缘态转变为金属态的关键。本征态的聚苯胺(PAn)是绝缘体,质子酸掺杂或电氧化都可使聚苯胺电导率提高十几个数量级。掺杂态聚苯胺结构中x表示掺杂程度,由掺杂来决定;y表示氧化程度,由合成来决定;A表示质子酸中的阴离子,由掺杂剂决定。然而聚苯胺的掺杂过程与其他导电高分子的掺杂不同,通常导电高分子的掺杂总是伴随着其主链上电子的得失,而聚苯胺在用质子酸掺杂时,电子数不发生变化。在掺杂过程中H+首先使亚胺上的氮原子质子化,这种质子化使得聚苯胺链上掺杂段的价带上出现了空穴,即P型掺杂,形成一种稳定离域形式的聚翠绿亚胺原子团。亚胺氮原子所带的正电荷通过共轭作用沿分子链分散到邻近的原子上,从而增加体系的稳定性。在外电场的作用下,通过共轭π电子的共振,使得空穴在整个链段上移动,显示出导电性。完全还原型(y=1)的全苯式结构(Leucoemeraldine base)和完全氧化型(y=0)的全醌式结构(Pernigraniline)都为绝缘体,无法通过质子酸掺杂变为导体,在010.0 eV时,电子很难激发到导带,物质在室温下显绝缘性;而当禁带宽度为1.0eV左右时,电子则可通过热、振动或光等方式激发到导带,成为半导体。导电高分子都有一个较长的P-电子共轭主链,因此又称为共轭高分子。P-电子共轭体系的成键和反键能带之间的能隙较小,约为1~3eV,接近于无机半导体中的导带的价带能隙。进行掺杂可使其电导率增加甚至十几个数量级,接近于金属电导率。掺杂来源于半导体化学,是指在纯净的无机半导体材料,如硅、锗或镓中,加入少量具有不同价态的第二种物质,以改变半导体材料中的空穴和自由电子的分布状态。导电高分子的掺杂不同于无机半导体的掺杂。无机半导体为原子的替代和镶嵌,而导电高分子的掺杂则常伴随着氧化还原过程。对于无机半导体,掺杂剂可以嵌入到其晶格中,而导电高分子经掺杂后主链会发生变形和位移,但掺杂离子不能嵌入主链中去,只能存在于高分子链与链之间。无机半导体掺杂后形成电子和空穴两种载流子;而对于导电高分子,广为接受的载流子形式有孤子(soliton)、极子(polaron)、双极子(bipolaron)等,这些载流子与高分子链上共轭P-电子紧密相关,而掺杂离子是作为对离子存在的。 从掺杂量上来看,导电高分子的掺杂量很大,可达一半以上,而无机半导体的掺杂量极低,仅为万分之几。另外,在导电聚合物中存在脱掺杂过程,掺杂/脱掺杂过程是可逆的,而无机半导体通常无法实现可逆的脱掺杂。聚苯胺的质子酸掺杂聚苯胺与质子酸反应,电导率大大提高,再与碱反应则又变为绝缘状态,即为质子酸掺杂和反掺杂。聚苯胺的掺杂机制同其它导电高分子的掺杂机制不同,那些高分子掺杂总是伴随着主链上电子的得失,而聚苯胺的质子酸掺杂没有改变主链上的电子数目,只是质子进入高分子主链上才使链带正电,为维持电中性,阴离子也进。半氧化型半还原型的本征态聚苯胺可进行质子酸掺杂,全氧化型聚苯胺可进行离子注入还原掺杂。全还原型聚苯胺只能进行碘掺杂和光助氧化掺杂。MacDiarmid提出当用质子酸进行掺杂时,亚胺基上的氮原子优先发生质子化,酸中的氢质子与氮原子结合形成价电子离域到大分子结构中形成共轭大P键,使聚苯胺的导电性能提高。 聚苯胺除了质子酸掺杂外,还可以进行光诱导掺杂、离子注入掺杂及电化学掺杂等。光诱导掺杂又称/光助氧化掺杂,是在特定波长的光照射下,使某物质释放质子作为聚苯胺的掺杂剂进行反应。研究表明,该掺杂是聚苯胺涂层在金属表面能发挥防腐作用的原因之一。有人通过紫外光加速VC-MAC(Vinylidene Chloride and Methyl Acrylate)释放质子完成了聚苯胺的光诱导掺杂。而使用离子注入掺杂将K+离子注入全氧化态聚苯胺中可以发生还原掺杂,离子注入区呈现n型半导体特性。当有40keVK+离子束注入后,聚苯胺薄膜的电导率随着剂量的增加而迅速增加。在电极表面发生的共轭高分子的掺杂为电化学掺杂。通过改变电极电位使涂覆在电极表面的聚合物膜与电极之间发生电荷转移,即可完成掺杂过程。电化学掺杂可以实现许多化学掺杂法无法实现的掺杂反应,也可以通过控制高分子与电极之间的电位差来改变掺杂程度,且掺杂与脱掺杂是一个完全可逆的过程,该过程中无需除去任何化学产物。 聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极大地限制了聚苯胺的应用。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、聚合、复合和制备胶体颗粒等方法获得可溶性或水溶性的导电聚苯胺。如在聚苯胺分子链上引入磺酸基团可得到水溶性导电高分子。 不过聚苯胺溶液即使在很低的浓度(20%)下,凝胶化倾向变得更加明显。以NMP为溶剂溶解高分子质量的聚苯胺,并加入二甲基氮丙啶作为凝胶抑制剂,可获得稳定溶液,这是因为二甲基氮丙啶破坏了分子链间的氢键,阻碍了凝胶作用。但这种溶剂价格昂贵,实用性前景不佳。 聚苯胺的导电性受pH值和温度影响较大,当pH>4时,电导率与pH无关,呈绝缘体性质;当2<pH<4时,电导率随溶液pH值的降低而迅速增加,其表现为半导体特性;当pH<2时,呈金属特性,此时掺杂百分率已超过40%,掺杂产物已具有较好的导电性;此后,pH值再减小时,掺杂百分率及电导率变化幅度不大。研究表明,即使用12.0mol/L的盐酸,掺杂百分率也只有46.7%,即分子链中平均每两个氮原子只有不到一个被质子化。 电导率与温度在一定温度范围可认为随着温度的升高其电导率增大。在一定pH值下,随电位升高,电导率逐渐增大,随后达到一个平台。但电位继续升高时,电导率却急剧下降,最后呈现绝缘体行为。扫描电位的变化反映在聚苯胺的结构上,说明聚苯胺表现的状态中,最高氧化态和最低还原态均为绝缘状态,而只有中间的半氧化态呈导电性。另外,电导率较高的样品温度依赖性较弱,而电导率较低的样品温度依赖性较强。聚苯胺的电导性不仅与主链结构有关,而且与取代基及取代位置有关。苯环上取代的聚苯胺由于取代基增大了苯环间的平面扭曲角,使主链上的P电子定域性增强,致使高分子的电导率降低。而在胺基氮原子上取代的苯胺衍生物电导率和其烷基取代基的长短有关,即取代基越长,产物的分子量越低,在有机溶剂中的溶解度越大,但电导率随之下降。芳香基取代的聚苯胺的电导率高于烷基衍生物的电导率。有人还尝试碳纳米管掺杂聚苯胺,结果表明碳纳米管的掺入可以有效地提高聚苯胺材料的电性能,但对光性能有着相反的影响。 聚苯胺分子主链上含有大量的共轭P电子,当受强光照射时,聚苯胺价带中的电子将受激发至导带,出现附加的电子-空穴对,即本征光电导,同时激发带中的杂质能级上的电子或空穴而改变其电导率,具有显著的光电转换效应。而且在不同的光源照射下响应非常复杂且非常迅速。在激光作用下,聚苯胺表现出高非线性光学特性,可用于信息存贮、调频、光开关和光计算机等技术上。 三阶非线性光学效应主要来自载流子自定域而形成的激子传输,并且主要依赖于掺杂度、聚合条件以及主链的构相和取向、共轭长度、取代基种类等,不同的氧化态和掺杂度的聚苯胺具有不同的三阶非线性光学系数。 聚苯胺的表征手段有电导率测量、TG-DTA、XRD、FTIR、UV-vis、XPS、TEM和SEM等。其中,TG-DTA测定复合前后的热稳定性变化,XRD测定复合前后的晶型变化,FTIR测定复合前后的官能团变化,UV-vis可表征NCs结构及PAn掺杂状态的变化,XPS结合能可表征NCs中各元素化学态的变化和掺杂剂对N结合能的影响,TEM和SEM直观显示出NCs的形貌;而根据聚苯胺的特殊功能,又有特殊的表征手段,如通过电化学阻抗谱和阳极极化曲线表征防腐蚀性能,通过循环伏安法表征电极性能,通过磁化系数、电子顺磁共振技术、比饱和磁化强度、SQUID表征磁性能等。各表征手段中,以TEM和SEM的形貌表征最为直观。 聚苯胺紫外光谱图册参考资料。

聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性及电化学性能。经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传感器、电子场发射源、较传统锂电极材料在充放电过程中具有更优异的可逆性的电极材料、选择性膜材料、防静电和电磁屏蔽材料、导电纤维、防腐材料,等等。聚苯胺因其具有的原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了广泛的研究和应用。12345678聚苯胺的电活性源于分子链中的P电子共轭结构:随分子链中P电子体系的扩大,P成键态和P*反键态分别形成价带和导带,这种非定域的P电子共轭结构经掺杂可形成P型和N型导电态。不同于其他导电高分子在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如Cl-、硫酸根、磷酸根等)进入主链,与胺和亚胺基团中N原子结合形成极子和双极子离域到整个分子链的P键中,从而使聚苯胺呈现较高的导电性。这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH值和电位等因素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性。

#15868046706# 聚苯胺的毒性是怎样的? - ******
#赏周# 苯胺的毒性较大,是致癌物质 聚苯胺找一下给你 聚苯胺,商品牌号为“北京-02”.这类缓蚀剂是以甲醛和苯胺作为原料在酸性介质中聚合而成.酸洗缓蚀混合液中各成分的质量比为: 苯胺:甲醛:纯盐酸:热水=1:1:0.5:20 由于聚苯胺的性能不稳定,贮存中会发生变化,所以,一般是在酸洗现场现用现配. 这种缓蚀剂的主要优点是合成工艺简单,水溶性较好,缓蚀效果也好.缺点是所使用的原料(甲醛和苯胺)都具有一定的毒性,对人体有危害.

#15868046706# 实验室聚苯胺的制备,盐酸的作用是什么,可否用其他的酸替代? - ******
#赏周#[答案] 聚苯胺为导电聚合物,而本征态的聚苯胺无法导电,只有通过酸掺杂后电导率才会大幅度提升,盐酸为质子酸,在反应过程中起到聚合反应所需的酸性环境和质子源两个作用,制备聚苯胺过程中,也可用其他酸代替,比如:磺基水杨酸

#15868046706# 为什么说聚苯胺电极是电化学可逆的? ******
#赏周# 聚苯胺具有优良的导电性和催化性能,一般用于修饰电极,比如聚苯胺膜电极运用于二次电池可以提高电池性能,能减小电极的极化,也就表示其具有良好的可逆性和循环稳定性.

#15868046706# 聚苯胺中含有s元素吗 - ******
#赏周# 没有.聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性及电化学性能.经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传感器、电子场发射源、较传统锂电极材料...

#15868046706# 聚吡咯、聚苯胺是有机物吗? - ******
#赏周# 这么跟你说吧,有“聚XX”的都是有机物,当然有机物的范围比这广,没有“聚XX”的好多也是有机物如吡咯,苯胺也就是聚吡咯、聚苯胺的单体也是有机物!有机物指的是 与机体有关的化合物(少数与机体有关的化合物是无机化合物,如水),通常指含碳元素的化合物,但一些简单的含碳化合物,如一氧化碳、二氧化碳、碳酸盐、金属碳化物、氰化物等除外.

#15868046706# 苯胺聚合为什么在低温下进行 - ******
#赏周# 反应温度对聚苯胺的电导率影响不大,但在低温下(0℃左右)聚合有利于提高聚苯胺的分子量并获得分子量分布较窄的聚合物,所以通常在较低温度下进行.聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性...

#15868046706# 有蓝色的聚苯胺吗? - ******
#赏周# 有,我合成的

#15868046706# 聚苯胺怎么合成? - ******
#赏周# 聚苯胺(Polyaniline)一种重要的导电聚合物. 聚苯胺的主链上含有交替的苯环和氮原子,是一种特殊的导电聚合物.可溶于N-甲基吡咯烷酮中. 聚苯胺随氧化程度的不同呈现出不同的颜色.完全还原的聚苯胺(Leucoemeraldine碱)不导电...

#15868046706# 实验室制备的聚苯胺导电性和什么有关? - ******
#赏周# 聚苯胺只有在隐性翠绿亚胺盐形式才有导电性,其他形态不是绝缘体就是半导态,聚苯胺的电容行为在酸性条件下可以说应该是氢离子的嵌脱引起的化合价的变化导致的,也就是通过显式翠绿亚胺盐-----隐式翠绿亚胺盐这两种形态的变化来存储和释放电荷的 准静水压力对定向拉伸前后,聚苯胺薄膜电学性质的影响.发现未定向拉伸的聚苯胺薄膜的电导随压力单调增加,跃迁势垒T_o随压力单调减少,而定向拉伸后的聚苯胺薄膜则在0.47GPa出现电导的极大值,在0.35~0.71GPa之间出现T_o的极小值,这个异常行为与聚乙炔、聚噻吩等导电高聚物均不相同.

  • 绿色聚苯胺时间久了变黑色
  • 答:?发生了还原作用。根据查询绿色聚苯胺性质得知,聚苯胺具有很强的还原性,时间久了可以将铬离子还原为铬离子,从而导致其变成黑色。绿色聚苯胺由苯胺单体在酸性水溶液中经化学氧化或电化学氧化得到的。

  • 聚苯胺的禁带宽度
  • 答:物质在室温下显绝缘性。而当禁带宽度为1.0eV左右时,电子则可通过热、振动或光等方式激发到导带,成为半导体。聚苯胺是高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性及电化学性能。

  • 聚苯胺酸掺杂在碱性条件下稳定吗
  • 答:不稳定。聚苯胺酸很大程度上还决定于其掺杂度,掺杂在碱性条件下是不稳定的,导电聚合物在其掺杂态才是导电的,至于电导率不仅跟共轭双键有关。聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电...

  • 氧空位对聚苯胺导电性的影响
  • 答:2、氧空位可以改善聚苯胺的稳定性,聚苯胺在长期使用或存储过程中可能会发生降解,但是引入氧空位可以提高聚苯胺的稳定性,从而延长其使用寿命。3、氧空位可以调节聚苯胺的光学性能。聚苯胺的光学性质也受到氧空位的影响,通过...

  • 聚苯胺的应用
  • 答:聚苯胺涂料按物质的不同分为单一聚苯胺涂料、聚苯胺为底漆的涂料、聚苯胺与传统涂料的共混涂料三类。 1985年,Deberry发现在不锈钢上电沉积的聚苯胺膜能显著降低不锈钢在硫酸溶液中的腐蚀速率,其实就是单一聚苯胺涂料,即苯胺在酸溶液通过...

  • 用铁氰化钾制备导电高分子聚苯胺的原理
  • 答:3. 聚合过程不断进行,形成长链聚苯胺分子,从而产生导电性质。4. 铁氰化钾在反应过程中被还原为铁2+离子,反应结束后需要对产物进行过滤、洗涤和干燥处理。总体来说,铁氰化钾的氧化作用促进了苯胺聚合过程,使其形成导电高...

  • 实验室制备的聚苯胺导电性和什么有关?
  • 答:也就是通过显式翠绿亚胺盐---隐式翠绿亚胺盐这两种形态的变化来存储和释放电荷的 准静水压力对定向拉伸前后,聚苯胺薄膜电学性质的影响。发现未定向拉伸的聚苯胺薄膜的电导随压力单调增加,跃迁势垒T_o随压力单调减少,而定...

  • 什么是本征态的聚苯胺?
  • 答:有必要说明什么性质的本征态:如本征态电导、本征态发光、本征态磁性等。本征态性质是指不用掺杂而具有的材料性质。考虑聚苯胺的导电性,其本征态导电性就是指纯聚苯胺所有的导电性,而不是通过引入杂质而导致的导电性。本征...

  • 本征态聚苯胺和导电态的区别
  • 答:有必要说明什么性质的本征态:如本征态电导、本征态发光、本征态磁性等。本征态性质是指不用掺杂而具有的材料性质。 考虑聚苯胺的导电性,其本征态导电性就是指纯聚苯胺所有的导电性,而不是通过引入杂质而导致的导电性。

  • 聚苯胺聚合的基本原理
  • 答:微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法...

    为传递更多家电数码信息,若有事情请联系
    数码大全网