自由基聚合的地位

自由基聚合在高分子化学中占有极其重要的地位。是人类开发最早,研究最为透彻的一种聚合反应历程。60%以上的聚合物是通过自由基聚合得到的,如低密度聚乙烯,聚苯乙烯,聚氯乙烯,聚甲基丙烯酸甲酯,聚丙烯腈,聚醋酸乙烯,丁苯橡胶,丁腈橡胶,氯丁橡胶等。
该聚合反应属链式聚合反应,分为链引发、链增长、链终止和链转移四个基元反应 。 本体聚合是不加任何其他介质,只有单体在引发剂、热、光、辐射等引发下进行的聚合。有时还须加入少量色料、增塑剂、润滑剂、分子量调节剂等助剂。因此本体聚合主要特点是产物纯净,工艺过程、设备简单,适于制备透明和电性能好的板材、型材等制品。不足之处是反应体系粘度大,自动加速显著,聚合反应热不易导出,温度不易控制,易局部过热,引起分子量分布不均。
气态、液态、固态单体均可进行本体聚合,液态单体的本体聚合最重要。⑴ 本体聚合工艺
针对本体聚合法聚合热难以散发的问题,工业生产上多采用两段聚合工艺。第一阶段为预聚合,可在较低温度下进行,转化率控制在10%~30%,一般在自加速以前,这时体系粘度较低,散热容易,聚合可以在较大的釜内进行。第二阶段继续进行聚合,在薄层或板状反应器中进行,或者采用分段聚合,逐步升温,提高转化率。由于本体聚合过程反应温度难以控制恒定,所以产品的分子量分布比较宽。
本体聚合的后处理主要是排除残存在聚合物中的单体。常采用的方法是将熔融的聚合物在真空中脱除单体和易挥发物, 所用设备为螺杆或真空脱气机。也有用泡沫脱气法,将聚合物在压力下加热使之熔融,然后突然减压使聚合物呈泡沫状,有利于单体的逸出。
⑵ 本体聚合反应器
工业上为解决聚合反应热的难题,在设计反应器的形状、大小时要考虑传热面积等。
在自由基聚合本体聚合所用的反应器有以 下几种。
① 模型式反应器 主要适宜于本体浇铸聚合以制备板材、管、棒材等。模型的形状与尺寸大小根据制品的要求而定,同时要考虑到聚合时的传热问题。
② 釜式反应器 带有搅拌装置的聚合釜,由于后期物料是高粘度流体多采用螺带式(如单螺带或双螺带)搅拌釜,操作方式可以是间歇也可是连续操作。也有根据聚合过程中粘度的变化采用数个聚合釜串联,分段聚合的连续操作方式。
③ 本体连续聚合釜 连续聚合反应器有管式和塔式反应器两种。一般的管式反应器为空管,物料在管式反应器中呈层流状态流动。有的管式反应器在管内装有固定式混合器。
塔式反应器相当于放大的管式反应器, 无搅拌装置,物料在塔中呈柱塞状流动。 单体和引发剂溶于适当溶剂中进行的聚合方法称作溶液聚合法。溶液聚合反应生成的聚合物溶解在所用的溶剂中为均相聚合,如聚合物不溶于所用溶剂中而沉淀析出,则为非均相聚合又称沉淀聚合。
溶液聚合过程中使用溶剂,使体系粘度降低,因此混合和传热较易,温度容易控制,较少凝胶效应,可以避免局部过热。
另外,由于溶液聚合过程中使用溶剂,体系单体浓度低,聚合速率较慢,设备生产能力与利用率下降。如生产固体产品,则须进行后处理,溶剂的回收费用高,增加生产成本。因此工业上溶液聚合多用于聚合物溶液直接使用的场合,如涂料、胶粘剂、浸渍剂、分散剂、增稠剂等。如果要求得到固体聚合物,则可在溶液中加入与溶剂互溶而与聚合物不溶的其它溶剂使聚合物沉淀析出,再经分离、干燥而得到固体聚合物。
⑴ 溶剂的选择
溶液聚合所用溶剂主要是有机溶剂或水。溶剂的选择在溶液聚合中是很重要的。在自由基溶液聚合中选择溶剂时要注意:
溶剂对引发剂的诱导分解作用,以及对链自由基的链转移反应。
可按聚合产品对分子量的要求,参考CS值来选择溶剂。
根据溶剂对聚合物溶解性能和聚合产品的用途选择适当的溶剂。常用的有机溶剂有醇、酯、酮、苯、甲苯等。
离子聚合选用溶剂时首先要考虑到溶剂的溶剂化能力,其次再考虑到链转移反应。
⑵ 溶液聚合工艺
溶液聚合选用有机溶剂时,引发剂为可溶于有机溶剂的过氧化物或偶氮化合物。根据反应温度和引发剂的半衰期选择适当的引发剂。
用水作为溶剂时,采用水溶性引发剂,如过硫酸盐及其氧化-还原体系。
溶液聚合反应温度在溶剂的回流温度下进行,所以大多选用低沸点溶剂。为了便于控制聚合反应温度,溶液聚合通常在釜式反应器中半连续操作。直接使用的聚合物溶液,在结束反应前应尽量减少单体含量,或采用化学方法或蒸馏方法将残留单体除去。要得到固体物料须经过后处理,即采用蒸发、脱气挤出、干燥等脱除溶剂与未反应单体,制得粉状聚合物。
改变引发剂用量,单体与溶剂的用量比,添加分子量调节剂等方法来控制产物的分子量。 溶有引发剂的单体以液滴状悬浮于水中进行自由基聚合的方法称为悬浮聚合法。整体看水为连续相,单体为分散相。聚合在每个小液滴内进行,反应机理与本体聚合相同,可看作小珠本体聚合。同样也可根据聚合物在单体中的溶解性有均相、非均相聚合之分。如是将水溶性单体的水溶液作为分散相悬浮于油类连续相中,在引发剂的作用下进行聚合的方法,称为反相悬浮聚合法。
悬浮聚合体系一般有单体、引发剂、水,分散剂四个基本组分组成。不溶于水的单体在强力搅拌作用下,被粉碎分散成小液滴,它是不稳定的,随着反应的进行,分散的液滴又可能凝结成块,为防止粘结,体系中必须加入分散剂。
悬浮聚合产物的颗粒粒径一般在0.05~0.2mm。其形状、大小随搅拌强度和分散剂的性质而定。
悬浮聚合法因以水为介质,体系粘度低,传热好,温度易控制。产品分子量及其分布比较稳定。产物是固体微粒,后处理简单,只需经离心、干燥即可,因此成本较低。但也存在自动加速效应,使聚合速度不易控制;产品中的分散剂不能彻底清除,影响产品纯度。悬浮聚合法广泛应用于工业生产。
⑴ 成粒机理与分散作用
① 成粒机理
悬浮聚合的单体苯乙烯、氯乙烯等在水中溶解度很小,基本与水不相溶,只是浮在水面呈两层。在搅拌器强烈的剪切作用下,单体液层分散成液滴。
加有分散剂的悬浮聚合体系,当转化率到20~70%时,液滴进入发粘阶段,如果不搅拌仍有粘结成块的危险,因此在悬浮聚合中,搅拌和分散剂是两个重要因素。
② 分散剂及其作用
工业生产用的分散剂主要有保护胶类分散剂和无机粉末状分散剂两大类。
保护胶类分散剂都是水溶性高分子化合物。有明胶、蛋白质、淀粉、纤维素衍生物、藻酸钠等天然高分子化合物,部分水解的聚乙烯醇、聚丙烯酸及其盐、磺化聚苯乙烯、马来酸酐-苯乙烯共聚物等合成高分子化合物。这类分散剂的作用机理是吸附在液滴表面,形成一层保护膜,起着保护胶体的作用。
碳酸盐、磷酸盐、滑石粉、高岭土等无机粉末状分散剂的作用机理是细粉末吸附在液滴表面起着机械隔离作用。无机分散剂较适合于高温聚合。另外,悬浮聚合反应结束以后,无机粉末状分散剂易用稀酸洗脱,因而所得聚合物所含杂质较少。
分散剂种类的选择与用量的确定随聚合物种类和颗粒要求而定。有时在悬浮聚合体系还加入少量的助分散剂,如十二烷基硫酸钠、聚醚等。分散剂的用量为单体量的0.1%左右,助分散剂量是0.01~0.03%.
⑵ 悬浮聚合工艺
悬浮聚合法的典型生产工艺过程是将单体、水、引发剂、分散剂等加入反应釜中,加热,并采取适当的手段使之保持在一定温度下进行聚合反应,反应结束后回收未反应单体,离心脱水、干燥得产品。
悬浮聚合所使用的单体或单体混合物应为液体,要求单体纯度>99.98%。
在工业生产中,引发剂、分子量调节剂分别加入到反应釜中。引发剂用量为单体量的0.1% ~ 1%。
去离子水、分散剂、助分散剂、pH调节剂等组成水相。水相与单体之比一般在75:25~50:50范围内。
各种单体的悬浮聚合过程都采用间歇法操作。 乳液聚合是可用于某些自由基聚合反应的一种独特的方法,它涉及以乳液形式进行的单体的聚合反应。它是指单体在乳化剂和机械搅拌作用下,在分散介质中分散成乳状液而进行的聚合反应。乳液聚合体系的组成比较复杂,一般是由单体、分散介质、引发剂、乳化剂四组分组成。经典乳液聚合的单体是油溶性,分散介质通常是水,选用水溶性引发剂。当选用水溶性单体时,则分散介质为有机溶剂,引发剂是油溶性的,这样的乳液体系称为反相乳液聚合。
乳液聚合在工业生产上应用广泛,很多合成树脂、合成橡胶都是采用乳液聚合方法合成的,因此乳液聚合方法在高分子合成工业中具有重要意义。
乳液聚合法最大的特点是可同时提高聚合速率与分子量,同时还具备以下优点:
① 以水为分散介质,价廉安全。体系粘度低,易传热,反应温度容易控制。
②聚合速率快,分子量高,可以在较低的温度下聚合。
③ 适宜于直接使用胶乳的场合,如乳胶漆、粘结剂等的生产。
另外,乳液聚合也存在不足之处,即产品中留有乳化剂等物质,影响产物的电性能。需要得到固体产品时,乳液需经过凝聚(破乳)、洗涤、脱水、干燥等工序,生产成本较高。
⑴ 乳液聚合机理
①乳化作用
乳液聚合首先使单体在水中借助于乳化剂分散成乳液状态,这种使互不相溶的两相,即油(单体)-水转变为相当稳定难以分层的乳液,这个过程称为乳化。乳化剂在乳液体系能起乳化作用,是因为乳化剂分子是由亲水的极性基团和亲油的非极性基团构成的。
乳化剂溶于水的过程中,在乳化剂浓度很低时,乳化剂以分子状态溶解于水中,当浓度达到一定值后,乳化剂分子形成胶束,乳化剂开始形成胶束时的浓度为临界胶束浓度,简称CMC,此时的浓度约为0.01~ 0.03%。在大多数乳液聚合中,乳化剂的浓度(约2~3%)总超过CMC值1~3个数量级,所以大部分乳化剂处于胶束状态。胶束的数目和大小取决于乳化剂的量。在典型的乳液聚合中,胶束的浓度为1017~1018个/cm3。
乳化剂的作用是降低表面张力,使单体分散成细小的液滴;在液滴表面形成保护层,防止凝聚,使乳液保持稳定;增溶作用,使部分单体溶于胶束内。这三方面总合起来就是乳化作用。
乳化剂有阳离子型、阴离子型、两性型和非离子型四类。用于乳液聚合的大多是阴离子型和非离子型的乳化剂。
极性基团是阴离子的为阴离子乳化剂,如十二烷基硫酸钠(C12H25SO4Na)、松香皂等。它在碱性溶液中比较稳定。
非离子乳化剂在水中不能离解为正、负离子,其典型代表是环氧乙烷聚合物,或环氧乙烷和环氧丙烷嵌段共聚物、聚乙烯醇等是具有非离子型特性的乳化剂。在乳液聚合过程中不能单独使用,常用作辅助乳化剂,加入少量,可改善乳液稳定性、乳胶粒的粒径和粒径分布。
② 聚合机理
乳液聚合机理也经链引发、链增长、链终止反应。在乳液聚合过程中,聚合体系的基本组分分别以不同的状态存在,其变化情况是:
1)聚合过程相态变化
聚合反应开始前,单体与乳化剂分别以下列三种相态:a.水相中,极少量的单体和少量的乳化剂,大部分引发剂;b. 单体液滴,由大部分单体分散成的液滴,表面吸附着乳化剂分子,形成稳定的乳液;c.胶束,大部分乳化剂分子聚集而成,一般每个胶束由50~100个乳化剂分子组成,其中一部分为含有单体的增溶胶束。
在水相中的引发剂分解产生的自由基扩散进入胶束内,引发胶束中溶有的单体进行聚 合。随着聚合的进行,水相单体不断进入胶束,补充消耗的单体,单体液滴中的单体又溶解到水相,形成一个动态平衡。由此可见胶束是进行乳液聚合的反应场所,单体液滴是提供单体的仓库。
在聚合反应初期,反应体系中存在有三种粒子,即单体液滴、发生聚合反应的胶束―称作乳胶粒和没有反应的胶束。随反应进行,胶束数减少,直至消失,乳胶粒数逐渐增加到稳定。反应进入聚合中期,乳胶粒数稳定,单体液滴数减少。到反应后期,单体液滴全部消失,乳胶粒不断增大,体系中只有聚合物乳胶粒。这就是在聚合过程中体系组成的变化。
2) 成核机理
胶束进行聚合后形成聚合物乳胶粒的过程,又称为成核作用。
乳液聚合粒子成核作用的机理由两个同步过程进行。一是自由基(包括引发剂分解生成的初级自由基和溶液聚合的短链自由基)由水相扩散进入胶束,引发增长,这个过程为胶束成核。另一个过程是溶液聚合生成的短链自由基在水相中沉淀出来,沉淀粒子从水相和单体液滴上吸附了乳化剂分子而变得稳定,接着又扩散入单体,形成与胶束成核同样的粒子,这个过程叫均相成核。胶束成核作用和均相成核作用的相对程度将随着单体的水溶解度和表面活性剂的浓度而变化。单体较高的水溶性和低的表面活性剂浓度有利于均相成核;水溶性低的单体和高的表面活性剂浓度则有利于胶束成核。对有一定水溶性的醋酸乙烯酯,均相成核作用是粒子形成的主要机理,而对亲油性较强的苯乙烯,主要是胶束成核机理。
3) 聚合过程典型的乳液聚合根据乳胶粒数的变化可将聚合过程分为三阶段,即聚合物乳胶粒子形成阶段;聚合物乳胶粒子与单体液滴共存阶段和单体液滴消失、聚合物乳胶粒子内单体聚合阶段。三个阶段变化示意如图。
第Ⅰ阶段 — 乳胶粒生成期,即成核期。从开始引发直到胶束消失,整个阶段聚合速率递增。转化率可达2~15%。。
第Ⅱ阶段 — 恒速阶段。自胶束消失开始到单体液滴消失止。胶束消失,乳胶粒数恒定,体积增大,单体液滴消失,乳液聚合速度恒定。转化率达50%。
第Ⅲ阶段 — 降速期。单体液滴消失后,乳胶粒内继续进行引发、增长、终止,直到乳胶粒内单体完全转化。乳胶粒数不变,体积增大,最后粒径可达500~2000 Å。
聚合速率随乳胶粒内单体浓度的减少而下降。
⑵ 乳液聚合工艺
乳液聚合法是高分子合成工业的重要生产方法之一,主要生产合成橡胶、合成树脂、粘合剂和涂料用胶乳等。工业上用乳液聚合方法生产的产品有固体块状物,固体粉状物和流体状胶乳。如丁苯橡胶、氯丁橡胶、聚氯乙烯糊用树脂及丙烯酸酯类胶乳。
乳液聚合法的生产简单工艺流程如图。
在乳液聚合工艺配方中除以上组分外,还加入缓冲剂,分子量调节剂,电介质,链终止剂,防老剂等添加剂。
乳液聚合过程是按配方分别向聚合釜内投入水、单体、乳化剂及其它助剂,然后升温反应。根据向聚合釜加料方式,可分为间歇操作、半连续操作和连续操作,都在带有搅拌装置的聚合釜内进行反应。间歇操作、半连续操作在单釜内进行聚合反应,而连续操作则采用多釜串联的方式进行聚合反应,通常由4~12个釜组成一组生产线。
胶乳用作涂料、粘合剂等就可直接使用,不必再处理;必要时须调整含固量,可采用稀释或浓缩的方法。如要得到粉状胶乳,可采用喷雾干燥的方式。将胶乳连续送入喷雾干燥塔,喷入热空气与雾化的胶乳接触,经干燥成为粉状颗粒。
另外还可用凝聚法进行后处理,简单的方法是在胶乳中加入破乳剂将聚合物分离出后,再进行洗涤、干燥即得分散性的胶乳粉末。凝聚法因能去除大部分乳化剂,产物纯度高于喷雾干燥法。
⑶ 乳液聚合的发展
近几年内典型的乳液聚合法在理论上获得了很大进展,由Harkins,Smith和Ewart等人建立了乳液聚合机理和动力学模型,同时也有很多学者提出了壳层或核-壳层模型等一些有参考价值的理论。同时在乳液聚合技术方面也在不断发展和创新,出现了许多新的乳液聚合方法,如水溶性单体的反相乳液聚合,核壳乳液聚合,无皂乳液聚合,乳液定向聚合,乳液辐射聚合,乳液接枝共聚合及种子乳液聚合等,为乳液聚合技术领域提供了丰富的新内容,使乳液聚合在高分子合成工业应用更为广泛。采用无皂乳液聚合法可以得到粒子规整的单分散聚合物,核壳乳液聚合法可以通过调整核、壳两部分得化学组成、分子量及玻璃化温度来达到产物所需的性能要求。这些为开发性能优越的新产品提供了更多的渠道。



简述自由基聚合和逐步聚合的区别~

自由基聚合是链式聚合的一种,即链式聚合中形成的活性中心为自由基的聚合就是自由基聚合。至于链式聚合和逐步聚合这个问题教科书上写得很清楚啦。我就直接上图了哦(⊙o⊙)哦。


你问的是高化书上的基础概念,这些东西没学过的话听别人说,应该比较难理解😊😊

自由基聚合为用自由基引发,使链增长(链生长)自由基不断增长的聚合反应。缩聚反应是一种或几种含有二个或以上官能团的单体有机物化合成为聚合物的过程。
(1)自由基聚合属于链式聚合,包括链引发、链增长、链终止。链引发方式也有多种,许多需要加入引发剂,有的可以热引发,有的可以光引发等等。链终止的方式也有不同,有的是一个自由基发生转移而导致终止,有的是两个自由基相遇偶联而终止。自由基聚合里面还有著名的原子转移自由基聚合(ATRP)和可逆加成-断裂链转移自由基聚合(RAFT),你可以去了解一下。
绝大多数缩聚反应属于逐步聚合。它的聚合度与多分散度跟反应的转化率相关,聚合度是
1/(1-p),多分散度好像是1+p,p为转化率,但自由基聚合由于原理不同,也没有这样的关系,它跟具体体系,引发剂的比例等有关系。
(2)自由基聚合的异构规整度比较复杂,例如聚丙烯如果用自由基聚合(工业上用配位聚合),你就很难保证两两单体之间是头对头,还是头对尾;而且有时候由于自由基在链内发生转移还会产生支链,但缩聚反应A官能团只能跟B反应,它就不会这么复杂了。
(3)很多缩聚反应会脱去小分子。
如果你想详细了解这两者的不同,可以去搜索一下。

#15110009308# 比较四种自由基聚合方法以及聚合场所.举例 - ******
#苍影# 一般的高分子物理和高分子化学的教材上都有,自由基聚合反应在高分子合成工业中是应用最广泛的化学反应,大多烯类单体的聚合或共聚都采用自由基聚合,所得聚合物都是线型高分子化合物. 按反应体系的物理状态自由基聚合的实施方法有...

#15110009308# 简述自由基聚合和逐步聚合的区别 - ******
#苍影# 自由基聚合是链式聚合的一种,即链式聚合中形成的活性中心为自由基的聚合就是自由基聚合. 至于链式聚合和逐步聚合这个问题教科书上写得很清楚啦.我就直接上图了哦(⊙o⊙)哦. 你问的是高化书上的基础概念,这些东西没学过的话听别人说,应该比较难理解😊😊

#15110009308# 自由基的R表示什么意思 - ******
#苍影# 能代表很多原子.比如一氯甲基,R就能代表cl院子,也能代表苯环

#15110009308# 自由基共聚合,有规立构聚合定义 - ******
#苍影# 自由基共聚合 由一种单体进行的聚合,称为均聚.产物称为均聚物.由两种或两种以上单体共同参与的聚合反应,称为共聚合. 有规立构聚合,单体形成立体规整性聚合物的聚合过程.

#15110009308# 一般的自由基聚合为何难以制得立构规整的聚合物 - ******
#苍影# 通常立构规整性聚合物采用的是齐克勒-纳塔催化剂或者是茂金属络合体系的引发剂,以阴离子聚合为主.这些引发剂能够产生一定的活性中心数量,通常在链增长的过程当中,活性中心的数量是恒定不变的,因此,单体能够以同样的速率在各个活性中心配位、聚合.而自由基聚合通常是慢引发、快增长、速终止,容易发生双基终止,而且每一步链增长的活化能不相同,受体系影响很复杂,所以很难制备立构规整聚合物.

#15110009308# 自由基反应的特征 - ******
#苍影# 从化学反应的角度来看,自由基具有三个显著特点,即反应性强、具有顺磁性和寿命短.在所有分子成键过程中,电子都是倾向配对的,自由基中的未成对电子也有配对的倾向,因此大多数自由基都很活泼,反应性极强,容易反应生成稳定分子,这一重要性质导致自由基极易进攻细胞、蛋白质、酶和核酸等,这也正是自由基容易造成机体损害的直接原因.自由基的未成对电子具有顺磁性的自旋磁矩,这一特性为研究自由基的ESR技术提供了理论依据.多数自由基反应性很强,寿命很短,如羟基自由基的寿命只有10-6秒;但也有少数自由基反应性不强,寿命较长,并相当稳定,如多环芳烃自由基和醌类自由基以及自由基自旋标记物(吡啶类自旋标记物、吡咯啉类标记物)等.

#15110009308# 简要说明自由基聚合的四种实施方法及其优缺点分别是什么? ******
#苍影# 本体聚合、溶液聚合、悬浮聚合和乳液聚合

#15110009308# 是否所有的自由基都可以用来引发唏类单体聚合 - ******
#苍影# 自由基和离子聚合很难得到高分子量的聚合物 因为丙烯的正离子容易链转移,自由基也一样会转移,得到寡聚物哦 一般是使用ziega-nata催化剂来配位聚合的,也有philips催化剂等

#15110009308# 对于自由基聚合 - ******
#苍影# 任何反应都是有条件的,在确定的条件下反应会得到理想的结果.聚合反应也是如此.符合条件聚合物的聚合度增加,分子量增加,如果分子量降低,那聚合度一定会降低.不会出现聚合度降低,分子量升高的现象.

#15110009308# 自由基聚合为什么难于实现活性聚合 - ******
#苍影# 于缩聚产物单体都双官能度线型聚合物;间加入支化单元体型聚合物; 于普通自由基聚合产物支链 于性聚合产物(性自由基聚合性离聚合等)产物控性根据单体种类反应条件获线型、支链甚至超支化聚合物等 至于交联聚合物种前说体型缩聚物线型聚合物进行交联处理(交联剂、辐射等)让线型靠共价键结合起形三维网状结构

  • 自由基聚合的特征
  • 答:自由基聚合的特征可概括为慢引发、快增长、速终止。自由基聚合中常用引发剂分解来产生自由基,热、光、辐射、等离子体、微波等也能产生自由基,用来引发聚合。自由基聚合机理微观聚合历程由链引发、链增长、链终止、链转移等...

  • 乳液聚合和自由基聚合的区别是什么?
  • 答:乳液聚合和自由基聚合的区别:方法不同,含义不同。一、方法不同:本体溶液乳液悬浮是聚合方法常用的聚合方法有本体聚合、悬浮聚合、溶液聚合和乳液聚合四种。自由基聚合可选用其中之一进行;离子型或配位聚合,一般采用溶液聚合...

  • 如何比较自由基聚合和离子聚合?
  • 答:离子聚合和自由基聚合的区别:一、引发剂种类 1、自由基聚合:采用受热易产生自由基的物质作为引发剂 :偶氮类 过氧类 氧化还原体系 引发剂的性质只影响引发反应。2、 离子聚合:采用容易产生活性离子的物质作为引发剂 。...

  • 活性自由基聚合比传统自由基聚合有哪些优点
  • 答:在 20 世 纪50,60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构。1956年美国科学家Szwarc等提出了活性聚合的概念,活性聚合具有无终止、无转移、引发...

  • 研究原子转移自由基有什么意义
  • 答:研究原子转移自由基有什么意义 自由基聚合为用自由基引发,使链增长(链生长)自由基不断增长的聚合反应.缩聚反应是一种或几种含有二个或以上官能团的单体有机物化合成为聚合物的过程. (1)自由基聚合属于链式聚合,包括链...

  • 单体的活性与自由基的活性哪个对聚合反应速率的贡献值更大?为什_百度...
  • 答:在聚合反应中,自由基对聚合反应速率的贡献通常更大。这是因为自由基是聚合反应的引发剂,可以启动聚合反应链,而单体只是提供反应物质。在一些特殊的聚合反应中,单体对聚合反应速率有更大的贡献。例如,在离子型聚合反应中,...

  • 化学中什么是ATRP法
  • 答:原子转移自由基聚合(ATRP)原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了...

  • 为什么胶束是聚合的主要场所
  • 答:并对胶束内部的憎水基团产生保护作用。形成胶束的化合物一般为两亲分子,因此一般胶束除可溶于水等极性溶剂以外,还能以反胶束的形式溶于非极性溶剂中。以上内容参考百度百科-胶束 以上内容参考百度百科-自由基聚合 ...

  • 配位聚合和自由基聚合区别
  • 答:配位聚合和自由基聚合区别在于含义不同、方法不同。1、含义不同:聚合用聚合本体聚合、悬浮聚合、溶液聚合乳液聚合四种。自由基聚合选用其进行。离型或配位聚合,般采用溶液聚合。2、方法不同:配位聚合方法常用的聚合方法有...

  • 自由基二元共聚合反应有何重要意义
  • 答:聚合反应是由单体合成聚合物的反应过程。有聚合能力的低分子原料称单体,分子量较大的聚合原料称大分子单体。若单体聚合生成分子量较低的低聚物,则称为齐聚反应(oligomerization),产物称齐聚物。一种单体的聚合称均聚合反应,...

    为传递更多家电数码信息,若有事情请联系
    数码大全网